Bỏ qua

Observability Complete Learning Roadmap - Metrics, Logging & Tracing

🎯 Mục tiêu: Master Observability với công cụ phổ biến trong 10-12 tháng

Công cụ tập trung:

  • Metrics & Alerting: Prometheus + Grafana
  • Logging: ELK Stack (Elasticsearch + Logstash + Kibana)
  • Tracing & APM: Jaeger + OpenTelemetry

🔰 GIAI ĐOẠN 1: OBSERVABILITY FOUNDATION (Tháng 1-2)

Week 1: Observability Fundamentals

Search Keywords để học:

  • [ ] "What is observability in DevOps"
  • [ ] "Three pillars of observability metrics logs traces"
  • [ ] "Monitoring vs observability difference"
  • [ ] "SRE monitoring best practices"
  • [ ] "Observability strategy for microservices"
  • [ ] "Golden signals SLI SLO SLA explained"
  • [ ] "Observability tools comparison 2024"
  • [ ] "Observability implementation roadmap"

Core Concepts:

  • [ ] Four Golden Signals: Latency, Traffic, Errors, Saturation
  • [ ] RED Method: Rate, Errors, Duration
  • [ ] USE Method: Utilization, Saturation, Errors
  • [ ] Service Level Indicators (SLI)
  • [ ] Service Level Objectives (SLO)
  • [ ] Error budgets và alerting

Week 2: Metrics Fundamentals

Search Keywords để học:

  • [ ] "Application metrics types counter gauge histogram"
  • [ ] "Infrastructure metrics CPU memory disk network"
  • [ ] "Business metrics KPI monitoring"
  • [ ] "Metrics collection strategies"
  • [ ] "Time series data explained"
  • [ ] "Metrics cardinality problems"
  • [ ] "Metrics aggregation and downsampling"
  • [ ] "Metrics retention policies"

Metrics Types Practice:

# Counter - monotonically increasing
http_requests_total
database_connections_created_total

# Gauge - can go up and down
cpu_usage_percent
memory_usage_bytes
active_connections

# Histogram - distribution of values
http_request_duration_seconds
database_query_duration_seconds

# Summary - similar to histogram
response_time_summary
request_size_summary

Week 3: Logging Fundamentals

Search Keywords để học:

  • [ ] "Structured logging vs unstructured logging"
  • [ ] "Log levels ERROR WARN INFO DEBUG TRACE"
  • [ ] "Centralized logging architecture"
  • [ ] "Log aggregation strategies"
  • [ ] "Log parsing and enrichment"
  • [ ] "Log retention and archiving"
  • [ ] "Logging best practices security"
  • [ ] "Log correlation and context"

Logging Best Practices:

// Structured logging example
{
  "timestamp": "2024-01-15T10:30:00Z",
  "level": "ERROR",
  "service": "user-service",
  "trace_id": "abc123",
  "span_id": "def456",
  "user_id": "user123",
  "message": "Failed to authenticate user",
  "error": "invalid_credentials",
  "duration_ms": 145
}

Week 4: Tracing Fundamentals

Search Keywords để học:

  • [ ] "Distributed tracing explained"
  • [ ] "OpenTelemetry tracing concepts"
  • [ ] "Trace spans and context propagation"
  • [ ] "Tracing in microservices architecture"
  • [ ] "Trace sampling strategies"
  • [ ] "Trace correlation with logs and metrics"
  • [ ] "Application performance monitoring APM"
  • [ ] "Tracing overhead and performance impact"

Tracing Concepts:

Trace: Complete request journey
├── Span: Individual operation
│   ├── Tags: Key-value metadata
│   ├── Logs: Timestamped events
│   └── Context: Propagation info
└── Span: Next operation
    └── Child Span: Nested operation

📊 GIAI ĐOẠN 2: PROMETHEUS & GRAFANA MASTERY (Tháng 3-4)

Week 5: Prometheus Fundamentals

Search Keywords để học:

  • [ ] "Prometheus installation setup tutorial"
  • [ ] "Prometheus configuration prometheus.yml"
  • [ ] "Prometheus data model time series"
  • [ ] "Prometheus metrics types counter gauge histogram"
  • [ ] "Prometheus scraping targets discovery"
  • [ ] "Prometheus exporters node_exporter blackbox"
  • [ ] "Prometheus recording rules and alerts"
  • [ ] "Prometheus federation and high availability"

Prometheus Setup:

# prometheus.yml
global:
  scrape_interval: 15s
  evaluation_interval: 15s

rule_files:
  - "rules/*.yml"

alerting:
  alertmanagers:
    - static_configs:
        - targets:
            - "alertmanager:9093"

scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]

  - job_name: "node-exporter"
    static_configs:
      - targets: ["node-exporter:9100"]

  - job_name: "my-app"
    static_configs:
      - targets: ["app:8080"]

Week 6: PromQL Query Language

Search Keywords để học:

  • [ ] "PromQL tutorial Prometheus query language"
  • [ ] "PromQL selectors and matchers"
  • [ ] "PromQL aggregation operators sum avg max"
  • [ ] "PromQL functions rate increase irate"
  • [ ] "PromQL range queries and instant queries"
  • [ ] "PromQL histogram quantile calculations"
  • [ ] "PromQL troubleshooting common errors"
  • [ ] "PromQL performance optimization"

PromQL Examples:

# Basic queries
up
http_requests_total
cpu_usage{instance="server1"}

# Rate calculations
rate(http_requests_total[5m])
increase(http_requests_total[1h])

# Aggregations
sum by (instance) (cpu_usage)
avg_over_time(cpu_usage[1h])

# Advanced queries
histogram_quantile(0.95,
  rate(http_request_duration_seconds_bucket[5m])
)

# Alerting queries
rate(http_requests_total{status="500"}[5m]) > 0.1

Week 7: Grafana Fundamentals

Search Keywords để học:

  • [ ] "Grafana installation and setup"
  • [ ] "Grafana data sources configuration"
  • [ ] "Grafana dashboard creation tutorial"
  • [ ] "Grafana panel types graph stat table"
  • [ ] "Grafana templating and variables"
  • [ ] "Grafana alerting rules setup"
  • [ ] "Grafana plugins and extensions"
  • [ ] "Grafana user management and permissions"

Grafana Dashboard JSON:

{
  "dashboard": {
    "title": "Application Metrics",
    "panels": [
      {
        "title": "Request Rate",
        "type": "graph",
        "targets": [
          {
            "expr": "rate(http_requests_total[5m])",
            "legendFormat": "{{instance}}"
          }
        ]
      }
    ],
    "templating": {
      "list": [
        {
          "name": "instance",
          "type": "query",
          "query": "label_values(up, instance)"
        }
      ]
    }
  }
}

Week 8: Alertmanager & Alerting

Search Keywords để học:

  • [ ] "Prometheus Alertmanager configuration"
  • [ ] "AlertManager routing and grouping"
  • [ ] "AlertManager notification channels email slack"
  • [ ] "AlertManager silence and inhibition rules"
  • [ ] "Prometheus alerting rules best practices"
  • [ ] "Alert fatigue prevention strategies"
  • [ ] "SRE alerting philosophy"
  • [ ] "On-call management with AlertManager"

Alerting Rules:

# alerts.yml
groups:
  - name: application
    rules:
      - alert: HighErrorRate
        expr: rate(http_requests_total{status=~"5.."}[5m]) > 0.1
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: "High error rate on {{ $labels.instance }}"
          description: "Error rate is {{ $value }} requests per second"

      - alert: HighLatency
        expr: histogram_quantile(0.95, rate(http_request_duration_seconds_bucket[5m])) > 0.5
        for: 2m
        labels:
          severity: warning
        annotations:
          summary: "High latency on {{ $labels.instance }}"

📋 GIAI ĐOẠN 3: ELK STACK MASTERY (Tháng 5-6)

Week 9: Elasticsearch Fundamentals

Search Keywords để học:

  • [ ] "Elasticsearch installation and configuration"
  • [ ] "Elasticsearch cluster setup nodes shards"
  • [ ] "Elasticsearch indices and mappings"
  • [ ] "Elasticsearch query DSL tutorial"
  • [ ] "Elasticsearch aggregations and analytics"
  • [ ] "Elasticsearch index lifecycle management"
  • [ ] "Elasticsearch security X-Pack authentication"
  • [ ] "Elasticsearch performance tuning optimization"

Elasticsearch Setup:

# Elasticsearch installation
docker run -d --name elasticsearch \
  -p 9200:9200 -p 9300:9300 \
  -e "discovery.type=single-node" \
  -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
  elasticsearch:8.11.0

# Create index with mapping
curl -X PUT "localhost:9200/logs" -H 'Content-Type: application/json' -d'
{
  "mappings": {
    "properties": {
      "timestamp": { "type": "date" },
      "level": { "type": "keyword" },
      "message": { "type": "text" },
      "service": { "type": "keyword" },
      "trace_id": { "type": "keyword" }
    }
  }
}'

Week 10: Logstash Configuration

Search Keywords để học:

  • [ ] "Logstash installation and configuration"
  • [ ] "Logstash input plugins file beats http"
  • [ ] "Logstash filter plugins grok mutate date"
  • [ ] "Logstash output plugins elasticsearch stdout"
  • [ ] "Logstash grok patterns for log parsing"
  • [ ] "Logstash performance tuning pipeline"
  • [ ] "Logstash monitoring and troubleshooting"
  • [ ] "Logstash alternatives Fluentd Vector"

Logstash Configuration:

# logstash.conf
input {
  beats {
    port => 5044
  }

  file {
    path => "/var/log/app/*.log"
    start_position => "beginning"
  }
}

filter {
  if [fields][service] == "nginx" {
    grok {
      match => {
        "message" => "%{NGINXACCESS}"
      }
    }

    date {
      match => [ "timestamp", "dd/MMM/yyyy:HH:mm:ss Z" ]
    }

    mutate {
      convert => { "response_code" => "integer" }
      convert => { "bytes" => "integer" }
    }
  }
}

output {
  elasticsearch {
    hosts => ["elasticsearch:9200"]
    index => "logs-%{+YYYY.MM.dd}"
  }

  stdout { codec => rubydebug }
}

Week 11: Kibana Analytics & Visualization

Search Keywords để học:

  • [ ] "Kibana installation and setup"
  • [ ] "Kibana index patterns and field mapping"
  • [ ] "Kibana Discover log searching and filtering"
  • [ ] "Kibana Visualize charts graphs and tables"
  • [ ] "Kibana Dashboard creation and sharing"
  • [ ] "Kibana Canvas for custom presentations"
  • [ ] "Kibana alerting and notifications"
  • [ ] "Kibana security and user management"

Kibana Query Examples:

// Kibana Query DSL
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "service": "user-service"
          }
        },
        {
          "range": {
            "timestamp": {
              "gte": "now-1h"
            }
          }
        }
      ],
      "filter": [
        {
          "term": {
            "level": "ERROR"
          }
        }
      ]
    }
  }
}

Week 12: Beats & Log Shipping

Search Keywords để học:

  • [ ] "Elastic Beats overview Filebeat Metricbeat"
  • [ ] "Filebeat configuration log shipping"
  • [ ] "Metricbeat system metrics collection"
  • [ ] "Heartbeat uptime monitoring"
  • [ ] "Packetbeat network monitoring"
  • [ ] "Beats modules and processors"
  • [ ] "Beats output configuration Elasticsearch Logstash"
  • [ ] "Beats monitoring and troubleshooting"

Filebeat Configuration:

# filebeat.yml
filebeat.inputs:
  - type: log
    enabled: true
    paths:
      - /var/log/app/*.log
    fields:
      service: myapp
      environment: production
    fields_under_root: true

processors:
  - add_host_metadata:
      when.not.contains.tags: forwarded
  - add_docker_metadata: ~

output.logstash:
  hosts: ["logstash:5044"]

# Alternative direct to Elasticsearch
output.elasticsearch:
  hosts: ["elasticsearch:9200"]
  index: "logs-%{+yyyy.MM.dd}"

logging.level: info
logging.to_files: true

🔍 GIAI ĐOẠN 4: TRACING & APM MASTERY (Tháng 7-8)

Week 13: OpenTelemetry Fundamentals

Search Keywords để học:

  • [ ] "OpenTelemetry overview and architecture"
  • [ ] "OpenTelemetry SDK installation setup"
  • [ ] "OpenTelemetry auto-instrumentation"
  • [ ] "OpenTelemetry manual instrumentation"
  • [ ] "OpenTelemetry collector configuration"
  • [ ] "OpenTelemetry exporters Jaeger Zipkin"
  • [ ] "OpenTelemetry sampling strategies"
  • [ ] "OpenTelemetry context propagation"

OpenTelemetry Auto-Instrumentation:

# Python application
from opentelemetry import trace
from opentelemetry.auto_instrumentation import sitecustomize
from opentelemetry.exporter.jaeger.thrift import JaegerExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor

# Configure tracing
trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)

jaeger_exporter = JaegerExporter(
    agent_host_name="jaeger",
    agent_port=6831,
)

span_processor = BatchSpanProcessor(jaeger_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)

# Manual instrumentation
@tracer.start_as_current_span("process_request")
def process_request(user_id):
    span = trace.get_current_span()
    span.set_attribute("user.id", user_id)

    # Your business logic here
    result = database_call(user_id)

    span.set_attribute("result.count", len(result))
    return result

Week 14: Jaeger Distributed Tracing

Search Keywords để học:

  • [ ] "Jaeger installation and deployment"
  • [ ] "Jaeger architecture collector agent query"
  • [ ] "Jaeger UI trace analysis and debugging"
  • [ ] "Jaeger sampling strategies configuration"
  • [ ] "Jaeger storage backends Elasticsearch Cassandra"
  • [ ] "Jaeger performance tuning and scaling"
  • [ ] "Jaeger integration with Kubernetes"
  • [ ] "Jaeger vs Zipkin comparison"

Jaeger Docker Setup:

# Jaeger all-in-one
docker run -d --name jaeger \
  -p 16686:16686 \
  -p 14268:14268 \
  -p 6831:6831/udp \
  -p 6832:6832/udp \
  jaegertracing/all-in-one:latest

# Production setup with Elasticsearch
docker run -d --name jaeger-collector \
  -p 14267:14267 \
  -p 14268:14268 \
  -p 9411:9411 \
  -e SPAN_STORAGE_TYPE=elasticsearch \
  -e ES_SERVER_URLS=http://elasticsearch:9200 \
  jaegertracing/jaeger-collector:latest

Week 15: Application Performance Monitoring

Search Keywords để học:

  • [ ] "APM implementation strategies"
  • [ ] "Application tracing best practices"
  • [ ] "Performance bottleneck identification"
  • [ ] "Database query tracing and optimization"
  • [ ] "API performance monitoring"
  • [ ] "Error tracking and debugging"
  • [ ] "User experience monitoring RUM"
  • [ ] "Mobile application performance monitoring"

APM Instrumentation Examples:

// Node.js Express application
const express = require("express");
const { trace, context } = require("@opentelemetry/api");

const app = express();
const tracer = trace.getTracer("my-app");

app.get("/api/users/:id", async (req, res) => {
  const span = tracer.startSpan("get_user");

  try {
    span.setAttributes({
      "user.id": req.params.id,
      "http.method": req.method,
      "http.url": req.url,
    });

    const user = await getUserFromDatabase(req.params.id);

    span.setAttributes({
      "user.found": !!user,
      "db.query.duration": 150, // ms
    });

    res.json(user);
  } catch (error) {
    span.setStatus({
      code: trace.SpanStatusCode.ERROR,
      message: error.message,
    });

    span.setAttributes({
      "error.type": error.constructor.name,
      "error.message": error.message,
    });

    res.status(500).json({ error: "Internal Server Error" });
  } finally {
    span.end();
  }
});

Week 16: Advanced Observability Patterns

Search Keywords để học:

  • [ ] "Observability correlation metrics logs traces"
  • [ ] "Distributed tracing sampling optimization"
  • [ ] "Observability data pipeline architecture"
  • [ ] "Cost optimization observability data"
  • [ ] "Observability as Code GitOps monitoring"
  • [ ] "Service mesh observability Istio Linkerd"
  • [ ] "Chaos engineering with observability"
  • [ ] "Observability security and privacy"

🚀 GIAI ĐOẠN 5: ADVANCED OBSERVABILITY (Tháng 9-12)

Week 17-18: Production Observability Setup

Search Keywords để học:

  • [ ] "Production monitoring architecture design"
  • [ ] "Multi-cluster observability setup"
  • [ ] "Observability high availability and disaster recovery"
  • [ ] "Cross-region monitoring and alerting"
  • [ ] "Observability infrastructure scaling"
  • [ ] "Monitoring infrastructure costs optimization"
  • [ ] "Compliance and audit logging"
  • [ ] "Zero-downtime observability upgrades"

Week 19-20: Advanced Analytics & ML

Search Keywords để học:

  • [ ] "Machine learning for anomaly detection"
  • [ ] "Predictive alerting and forecasting"
  • [ ] "Log analysis with machine learning"
  • [ ] "Automated root cause analysis"
  • [ ] "Behavioral monitoring and profiling"
  • [ ] "Pattern recognition in observability data"
  • [ ] "AI-powered incident response"
  • [ ] "Observability data science applications"

Week 21-22: Observability Automation

Search Keywords để học:

  • [ ] "Infrastructure as Code for monitoring"
  • [ ] "Automated dashboard generation"
  • [ ] "Dynamic alerting rule management"
  • [ ] "Self-healing systems with observability"
  • [ ] "Automated incident escalation"
  • [ ] "GitOps for observability configuration"
  • [ ] "Policy-driven monitoring deployment"
  • [ ] "Observability testing automation"

Week 23-24: Observability Leadership

Search Keywords để học:

  • [ ] "Observability strategy and governance"
  • [ ] "Building observability culture in teams"
  • [ ] "Observability ROI measurement"
  • [ ] "Vendor evaluation and tool selection"
  • [ ] "Observability training and education"
  • [ ] "Industry observability best practices"
  • [ ] "Future trends in observability"
  • [ ] "Observability conference talks and papers"

📚 HANDS-ON PROJECTS

📊 Prometheus + Grafana Projects

  1. Complete Monitoring Stack

  2. Multi-service application monitoring

  3. Custom metrics and dashboards
  4. Comprehensive alerting setup
  5. Search: "Prometheus Grafana monitoring stack"

  6. Kubernetes Monitoring

  7. Cluster and pod monitoring

  8. Resource usage tracking
  9. Application performance monitoring
  10. Search: "Kubernetes Prometheus monitoring"

  11. Business Metrics Dashboard

  12. KPI and business metrics
  13. Real-time analytics
  14. Executive dashboards
  15. Search: "Business metrics monitoring Grafana"

📋 ELK Stack Projects

  1. Centralized Logging Platform

  2. Multi-application log aggregation

  3. Log parsing and enrichment
  4. Security and audit logging
  5. Search: "ELK stack centralized logging"

  6. Log Analytics and Investigation

  7. Error pattern analysis

  8. Performance troubleshooting
  9. Security incident investigation
  10. Search: "ELK stack log analysis"

  11. Compliance and Audit Logging

  12. Regulatory compliance logging
  13. Audit trail management
  14. Data retention policies
  15. Search: "ELK compliance audit logging"

🔍 Tracing Projects

  1. Microservices Tracing

  2. End-to-end request tracing

  3. Performance bottleneck identification
  4. Error propagation analysis
  5. Search: "Jaeger microservices tracing"

  6. Database Performance Monitoring

  7. Query performance tracing

  8. Connection pool monitoring
  9. Database bottleneck analysis
  10. Search: "Database tracing OpenTelemetry"

  11. API Performance Optimization

  12. API response time analysis
  13. Third-party service monitoring
  14. Performance optimization
  15. Search: "API performance monitoring tracing"

📋 SKILL MASTERY CHECKLIST

Prometheus & Grafana Expertise

  • [ ] Design and implement monitoring strategy
  • [ ] Create complex PromQL queries
  • [ ] Build comprehensive dashboards
  • [ ] Configure multi-tier alerting
  • [ ] Optimize Prometheus performance
  • [ ] Implement high availability setup

ELK Stack Mastery

  • [ ] Design scalable logging architecture
  • [ ] Configure complex log processing pipelines
  • [ ] Create effective log analysis workflows
  • [ ] Implement security and compliance logging
  • [ ] Optimize Elasticsearch performance
  • [ ] Troubleshoot ELK stack issues

Tracing & APM Skills

  • [ ] Implement distributed tracing strategy
  • [ ] Configure auto and manual instrumentation
  • [ ] Analyze complex trace data
  • [ ] Optimize application performance
  • [ ] Implement sampling strategies
  • [ ] Correlate traces with metrics and logs

🎓 CERTIFICATIONS & RESOURCES

  • [ ] Prometheus Certified Associate (If available)
  • [ ] Elastic Certified Engineer
  • [ ] Grafana Certified Professional
  • [ ] AWS/Azure/GCP Monitoring Certifications

Essential Books

  • "Observability Engineering" - Honeycomb Team
  • "Site Reliability Engineering" - Google SRE Team
  • "Monitoring with Prometheus" - James Turnbull
  • "Learning Elastic Stack" - Pranav Shukla

Online Learning

  • "Complete Guide to Elasticsearch" - Udemy
  • "Prometheus Monitoring" - Linux Academy
  • "Grafana Fundamentals" - Official Training
  • "OpenTelemetry Workshop" - Cloud Native Computing Foundation

✅ DAILY PRACTICE ROUTINE

Morning Check (15 mins)

  • [ ] Review overnight alerts and incidents
  • [ ] Check system health dashboards
  • [ ] Validate monitoring pipeline status
  • [ ] Plan daily observability tasks

Active Development (60-90 mins)

  • [ ] Work on monitoring improvements
  • [ ] Analyze observability data
  • [ ] Optimize queries and dashboards
  • [ ] Contribute to observability tools

Evening Review (20 mins)

  • [ ] Document findings and learnings
  • [ ] Update monitoring runbooks
  • [ ] Plan next day's priorities
  • [ ] Review observability metrics

🎯 MASTERY MILESTONES

Month 2: Foundation Complete

  • [ ] Understand observability principles
  • [ ] Basic Prometheus and Grafana setup
  • [ ] Simple ELK stack deployment
  • [ ] First distributed traces

Month 4: Intermediate Skills

  • [ ] Complex monitoring setups
  • [ ] Advanced dashboard creation
  • [ ] Log analysis and troubleshooting
  • [ ] Application instrumentation

Month 6: Advanced Implementation

  • [ ] Production-ready observability stack
  • [ ] Performance optimization
  • [ ] Advanced analytics and correlation
  • [ ] Automated alerting and response

Month 8: Expert Level

  • [ ] Multi-cluster observability
  • [ ] Custom tooling development
  • [ ] Advanced troubleshooting
  • [ ] Team mentoring and training

Month 12: Leadership

  • [ ] Strategic observability planning
  • [ ] Tool evaluation and selection
  • [ ] Industry contributions
  • [ ] Thought leadership

Observability Philosophy: "You can't improve what you can't measure, and you can't troubleshoot what you can't observe!"

🚀 Quick Start Action Plan

Day 1: Environment Setup

  • [ ] Install Prometheus, Grafana, and ELK stack locally
  • [ ] Create sample application with basic metrics
  • [ ] Set up first dashboard and alert
  • [ ] Generate sample logs and traces

Week 1 Goals

  • [ ] Complete basic tutorials for each tool
  • [ ] Monitor first real application
  • [ ] Create comprehensive dashboard
  • [ ] Set up basic alerting

Month 1 Targets

  • [ ] Production-ready monitoring stack
  • [ ] End-to-end observability implementation
  • [ ] Performance optimization baseline
  • [ ] Team knowledge sharing

Remember: Observability mastery comes from understanding your systems deeply and building the right instrumentation to gain insights into their behavior!

Bình luận